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ABSTRACT 

This paper presents a procedure for performing parameter optimization of ignition 

and growth conlinuum models for high explosive systcms. Continuum modeling of 

reactive flow in high explosive systcms can yield highly accurate predictions of ex- 

perimental observations. Howevcr, thc numerical paramctcr optimization that is 

nccdcd to cstablish thcse prcdictions gcncrally rcquircs many cvaluations of a 

modcl, and in the ca.. of continuum rcactivc flow modcls, each cvaluation re- 

quires long run tima. In tcrms of kccping Ihc total number of function cvaluations 

low, the variable mctric scquential quadratic programming approach is at prescnt 

the most efficient general nonlincar local optimization method available. In this 

investigation, the variable metric sequential quadratic programming code NLQPEB 

is coupled to the two-dimensional high n~c continuum modcling programs CALE 
and DYNA2D. An example parameter optimization of an 

Journal of Energetic MateriaIs Vol. 15,289-3 1 1 (1997) 
Published in 1997 by Dowden, Brodman & Devine, IN. 

289 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
5
 
1
6
 
J
a
n
u
a
r
y
 
2
0
1
1



ignition and growth modcl for the HMX-based high explosive PAX2A is prc- 

scnted. The optimization procedure adjusts the ignition and growth reaction rate 

modcl paramctcrs in ordcr to locally minimize the differcnce betwecn calculated 

and cxperimcntal pressurc histories from Manganin gauge experiments. 

INTRODUCTION 

Sequential quadratic programming methods have been successfully applied in 

previous investigations to the optimization of explosive product equation of state 

paramctcrs', shaptd charge analytic design models', and explosivcly formed pro- 

jeclile (Em) models3*". These efforts have not only demonstratcd the utility of 

modcrn nonlinear optimization mcthods, but they have also resulted in signifcant 

advancements in high explosives technology and have prompted broader applica- 

tion of sequential quadratic programming mcthods to other areas of munitions 

modeling. However. to date almost no attention has been placed on the applica- 

tion of optimization to rcactive flow modeling for the prediction of high explosivc 

initiation. The primary reasons for thii arc twofold. Firstly, the reactive flow con- 

tinuum modeling of these systems requircs both Tic mcshing and small time step 

sizcs to prcservc accuracy. Thcsc factors contribute to long run limes. Secondly, 

numerical instability associated with the computational aspects of rcactivc .flow 

modeling have also contributed to making parametric investigations difficult. 

However, advanccs in reactive flow modeling technology for high explosive sys- 

ternsh7, and dramatic increases in computing speed and availability arc, at prcsent, 

offsctting these difficulties. For cxarnple, onc-dirncnsional reactive flow modeling 

of initiation can be pcrformcd in a rclativcly short time; on the ordcr of fivc min- 
utes on a personal1 computcr. Thcsc rclativcly short NII times make parametcr op- 

timization by thc z;cquential quadratic programming mcthod highly practical. 
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9 M 

A series of impact initiation tcsts werc conductcd on thc HMX-bascd high 

explosive PAX2A at the Lawrence Livermore National Laboratory (LLNL) High 

Explosives Applications Facility (HEW. Thc ksts wcrc conductcd to supply 

data for the parameterization of the high explosive ignition and growth model. 

Manganin gauge transducers werc cmploycd to rcad pressure at various positions 

within the explosive matcrial. The apparatus, shown schematically in Figurc 1. 

was designcd to simulate a l i  one-dimcnsional tcst for measuring the prcssum 

during the ignition and growth phases of P cxplosivc rcaction. In an actual onc- 

dimensional test, Ihe presencc of the Manganin gauges may intcrfcre with thc 

detonation front. Therefore, lhc wedge-shaped configuration shown was uscd for 

testing. 

The apparatus consisted of two nuin parts: a projectile donor assembly and 

an explosivc wedge amptor assembly. Thc donor assembly consisted of a plastic 

sabot that houscd either a steel or aluminum impactor. The acceptor assembly 

consisted of an aluminum buffer plate and two scctions of the explosiw PAXZA. 

One section of the cxplosive was cut in the shapc of a cylindrical wedge, where 

one end face remained orthogonal to thc cylinder axes, and the opposite end face 

was cut on a plane 15 degrees h m  orthogonal, The remaining section of PAX2A 
was disk shaped. Two Manganin gauges were placed bctwecn the buffer plate and 

the orthogonal end face of the explosive wedge, and a six gauge packet was 

sandwiched &tween the 15 degree end Facc of the wedge and the cxplosive disk. 

Thc dimensions of the explosive wedge acceptor assembly werc such that side 

rarefaction into the PAX2A components would not intcrfere with the Manganin 

gauge measurcmcnts within the experimental time frame. 

An experiment was initiatcd by propchg the donor apparatus into thc cx- 

plosive wedge acceptor assembly. The velocity of the projectile donor assembly 
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was mcasured jusl. prior to impact. The Manganin gaugc measurement points A 

and B in Figurc 1 wcre used to determine the prcssure verses lime histories on the 
initial impact plane of thc explosive, and hence, wcre used to hclp ensurc that the 

initial shock front was coplanar with the intcrfacc. As the shock front propagates, 

the Manganin gaugcs C through H are encountered in sequcncc. The spacing be- 

tween gauges i the axial dimension is constant. Therefore, the test simulates a 

one-dimensional experiment where gauges have been spaced at constant intervals, 

but without any inilerfcrcnce from the preceding gauges. 

CONTINUUM MODELING 

The high rate continuum modeling softwarc CALE6 and DYNMD’ wcrc 

interfaced with the optimization software in this invcstigation. Thcse..compulcr 

programs modcl the rcactive flow through cxplicit timc integration of thc conscr- 

vation equations for mass, momcrncntum and cncrgy, as wcll as a reactant to 

product rcaction ratc. Thc niatcrials statc, including rcacicd fraction, arc discrc- 

t i z d  on a computational mcsh. DYNA2D is a Lagrangian dcscription fiitc elc- 

nicnt codc and CALE is an arbitrary Lagrangian-Eularian finitc diffcrcncc codc. An 

cxampk of thc computationd mcsh uscd in this invcstigation is shown in Figurc 2. 

Duc to thc onc-dimcnsional naturc of thc niodcl, cach mcsh arca is onc ccll in 

height by the statcd numbcr of cclls in lcngth. Thc constitutivc modcls, cquations 

of s h l c  and rcaction rate modcls arc dcscribcd in thc following paragraph. 

Constitutivc modcls and equations of statc for thc noncxplosivc matcrials 

shown in Figurc 2 arc as follows. Thc Lcxan sabot u t i l iml  a Mic-Grunciscn 

cquation of statc which modcls prcssurc as a function of matcrial dcnsity and en- 

crgy. Thc sabot was assigned a strcngth of x ro  in thc constitutivc niodcl. Thc 
bullct and bulkr platc matcrials wcrc modclcd with thc Mic-Grunciscn cquation of 
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statc, and thc Stcinbcrg-Guinian constitutivc cquations' which modcl shear modu- 

lus and yicld strcngth as funciions of strain, tcmpcraturc, and prcssurc. 

The Joncs-Wilkens-Lec (JWL) thcrmodynamic cqualion of statc model9 was 

uscd for the unrcacted explosive and rcaciion products. The cquation is cquivakni 

in form For thc reactants and products and is given by: 

(1) 
p=A,-R1v + R e  - R V  2 +- U C T  

V 

whcre P = pressure, V = relative volumc, T = tcmpcralure, C,= hcat capacity. o = 

Grunciscn paramctcr, and A,  R,  R I ,  Rz = constants. Scpuatc scts of variables and 

constants were defincd for the rcaclant and product cquations of state. 

Thc ignition and growth reaction rate is  givcn by thc TWCJ bum rate 

cquation: 

dF - =Z(l-F)b(plp, -1-a)" +G,(l-F)CFdPY +G,(l-F)'F'P' 
dt (2) 

whcrc F = fraction rcacted, t = time, p = density, po = initial density, P = pressurc, 

and I, b. a, x, GI, c, d. y, GA e, g. and z arc constants. The reaction rate cquation 

is uscd to model differcnt behavioral rcgimcs of the dctonalion through assignment 

sct ofconstant limits. Limits FI-, FGI-, and FG~,,,,, are placcd on thc burn frac- 

tion to control the active range of the constants I, GI, and, GI, respectively. Par- 
ticularly, if F > Ff- thcn I = 0, if F > FGI- thcn GI = 0, and if F c 

FGI- thcn GI = 0. As thc rcactcd fraction incrcascs, inlcrnal encrgy is liberated 

at Lhc ralc 

wherc E, has unit! of spccitic intcmal cncrgy timcs dcnsity. 
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VARIABLE METRIC SEOUENTIAL OUADRATIC PROGRAMMING 

The objcctivc: of optimization is to minimix (or maximize) a function of onc 

or morc paramctcrs. A sct of quality and/or incquality constraints that arc also 

functions of the paramctcr sct, and which confinc thc paramctcr values to spccilii 

regions of thc w c h  spacc, may also bc imposed as part of thc optimization prob 

lem. A minimization probkm may bc statcd morc formally in thc following mathc- 

matical forrnac 

minimizc F(x) 
subjcct to: g(x) = 0 

h ( x )  2 0 
(4) 

whercx is a rcal-v,alued vcctor of variablc paramctcrs, F(x)  is a scalar-valued cost 

function, and g(x) and h(x)  arc vcctors of constraint functions. 

Thc solution to thc gcncral optimization problcm is obtaincd by Lagrangc 

Multiplier analysis. The Lagrangian for the standard optimization problem may be 
writlcn as 

L(x,iz,p) = F(X) -Ar&) -prh(x ) ,  ( 5 )  

whcrc A and p am: Lagrangc multiplicr vcctors. Thc following Kuhn-Tucker ncc- 

cs~ary'~*'' conditions for a local minimum may be applicd to gain potential solu- 

tions to this problcm: 
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pTh(x) = 0 
pi 20. 

In cases where it is unclear if a point satisfying the necessary conditions is a mini- 

mum, maximum, or othcrwise. a set of second-order sufficient conditions may be 
applid for clarification". 

If the analytical representation of F(x)  or the constraint set is not available!, 

or not tractable, lhcn numerical methods may bc appliod to lid an approximation 

to the solution of (4). At present. the most eflicient numerical approach to solving 

nonlinear optimization problems is the Sequcntial Quadratic Programming (SQP) 

method". The SQP method produces iterative estimates of the of the optimal pa- 

rameter values and the Lagrange multipliers. As thc numerical algorithm con- 

verges, these iterative estimates approach the optimal parameter values and La- 

grange multiplicrs that would result from the analytical method (6), if it were ap- 

plied. 

The primary computational components of a sequential quadratic program 

are responsible for the formation of an iterative locally quadratic approximation to 

the Lagrangian function, and a s u E i n t  decrease line search of an augmented La- 

grangian merit function. An iterative quadratic approximation to the Lagrangian is 

given by, 
1 

L,(x,,a,,p,) = L*(+-, . L . P ~ - ~ )  + 4v~,(x,- ,  , ~ , , . P ~ - ,  1 + pk'wk (7) 

wherc V is the gradient operator (with rcspect to x), 
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and xt and x ~ - ~  are the values of the parameter vector x at the current iteration 

and the previous iteration, respectively. The second-order partial derivative, or 

Hessian, approximation matrix, B, in (7), is generated by variable metric update 

equations. The update that is typically applied is the Broyden-Fletcher-Goldfarb- 

Shanno (BFGS) ~ p d a t e ' ~ ' ' ~ * ' " . ' ~  , which was modified by Powel": 

where 

and 

The quadratic approximation to the Lagrangian function is solved for the direction, 

dk , in parameter space that points in a minimizing direction of the quadratic. The 

variable metric matrix, 4, must remain positive definite to ensure a bounded so- 

lution for the search direction, d,. In practice, a positive definite Bk is maintained 

by the Levenberg-Marquardt method or by storing the variable metric updates in 
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Cholcsky decomposed form"*'9. Thc positive deGnite state of Bt cnabk (7) to bc 

solved as a minimization problem. 

In a numerical setting, the quadratic approximation to the Lagrangian m y  be 

recast, through primal-dual rclationship~'~. into the following quadratic subprob 

lem with linearized constraints: 

Thc miintcnincc of il positive dciiiitc BA cnsurcs that thc local approximation 

givcn in (12) can be readily solvcd for thc scich dircction, d k ,  through standard 

convcx quadratic progriunming mcthods20. In practice, olhcr numcrical tcchniqucs 

may bc applicd to prevcnt lhc linearid constraint approximations from com- 

pttcly closing off the fcasiblc rcgion'l,12. An activc scls stratcgy'8.21 is also cm- 

ploycd so that only thc inequality constraints that arc satisfi  to within somc small 

tolerance of an yuality arc included in the quadratic modcl, thereby reducing the 

overall computational effort. 

Following solution of the quadratic subprobkm, a onc-dimensional line 

search along thc minimbhg dimtion, (It. is conducted. Another class of ap- 

proximations to the Lagrangian (augmented Lagnngian merit functions) are typi- 

~al ry  u ~ e d  for this phas~: of c h ~  analysis. TIE following merit function" was used 

for this analysis: 
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The itcration point, xk , is dctermincd by evaluating ( I  3) at succcssivc candidatc 

points, .YL, until a !sufficient dccrcasc in thc valuc of (13) is found. Thc candidatc 

points arc gencraled from the linc search update equation 

The variables is a scalar-valued stcp length parameter that is iteratively adjusted 

by a step-length algorithm. In program NLQPEB'*,a is initialized to one at the 

&ginning of cach linc search and the candidatc point. Fk, from (14) is testcd for a 

sufficicnt dccrcaw in (13) by applying Armijo's stcp-lcngth ~r i tcr ia '~ .* '~~.  If thc 

critcria are satisfd then thc value of thc candidatc point gcncrated by (1 3) is as- 

signed to x, and this valuc is passcd to the next ovcrall itcration of thc SQP al- 

gorithm. Howcver, if the criteria are not sahficd, a two-point-slopc quadratic ap- 

proximation" of (13) is solved [or a minimizinga . The quadratic approximation 

utilizcs function anti gradient valucs of (13) from itcration pointx,-, and thc func- 

tion value of (13) for thc candidate point Zk.  Thc stcp-lcngth criteria and thc 

minimization of thc quadratic approximation are applicd in an interpolative manner 

until a sufficicnt dccrcasc or somc tcrmination crilcrion is rcachcd. 

The SQP algiDrithm p rocds  by solving thc quadratic subproblcm and linc 

search problem at each Newton itcration, dcfmcd by (7). Succcssivc Ncwton it- 

crations arc applicd until onc or more tcrmination critcria arc achicvcd. Termina- 

tion critcria includc: a maximum numbcr of Ncwton iterations, a maximum numbcr 

of line search iterations, thc norm of thc diffcrcncc bctwccn succcssivc itcration 

points lcss than somc upper bound, or thc norm of thc gradient of thc Lagrangian 

in (7) lcss than some uppcr bound. Any of thc first thrcc termination critcria may 

bc cquivalcnt to a failurc of thc algorithm, cithcr by nonconvcrgcnce or prcmaturc 

convergcncc to a nonoplimal valuc. The last tcrmination critcrion constitutcs a 
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successful termhation of thc algorithm, where the conditions stated in (6) have 

bccn satisfid to within a defined numerical ~olcrance. 

For this investigation, the general purpose variablc mctric sequential quad- 

ratic program NLQPEB'~ was u s ~ d  to perform the parameter optimizations. 

NLQPEB is similar to the algorithm d e r d  in'*, but it has the added feature that 

the updatc of the variablc mctric matrix, Bk, is not pcrformcd until aftcr comple- 

tion of the line scarch, as opposed to directly preceding solution of the quadratic 

subproblcm. Thc initialition proccss was observed to aid in thc convergence of 

paramctcrs with small cost function sensitivities in this study. 

COST FUNCTION DEFINITION 

The cost function defies, subjcct to any constraints, what is to be minimized 

by the optimization program. The form of the cost function selected can greatly 

influcncc how thc theoretical predictions and the experimcntal data correspond to 

one anolhcr. Hcncc, the process of sclecting a cost function is in part determined 

by the scientists perception of how a good quality fit between the data and theo- 

rctical prcdictions should look. 

The experimental Manganin gauge data p r o d u d  by the cxplosive wedge 

tcsts'was marked by rapid changcs in prcssure as the detonation front passed. If 

the wrong typc of cost function were selected, lhen the predictions might be al- 

most cntirely dominated by thc bchavior in a close neighborhood of the dctonation 

front. It was observed that minor differences bctwcen mcasurcd and predicted arri- 
val times of thc dctonation front rcsultcd in largc contributions to some typcs of 

cost functions. For instacc, thc end result of applying an error-squared cost 

function to the optimization of ignition and growth paramelcr~ were reasonably 

accuratc prcdictions of thc dctonation front arrival times at cach Manganin gauge 

299 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
5
 
1
6
 
J
a
n
u
a
r
y
 
2
0
1
1



location, but relatively poor prcdictions of the observed experimental behavior that 

occurred aftcnvarcls. Hcnce, this type of cost function was dcemcd too sensitive 

to the portion of the data associated with the shock wavc, and the following 

weighted absolute ldifferencc cost function was applied: 

wherc c, = ith thc weight factor, <*,, = thc ith calculated pressure history data 

point, yXp, = the i" expcrimcntal pressurc history data poinl, n =data point 

count, and i ranges from I to n .  A maximum allowed difference of 0.5 Mbar 

betwecn expcrimental and calculaled pressurcs was applied at each data point in 

order to furthcr soften the ignition ovcr-scnsitivity cffccts associated with the 

shock wave. 

OPTIMIZATION OF THE EOUATIONS OF STATE AND 

BURN RATE PARAMETERS 

The NLQPEB optimization program was coupled, as shown in Figure 3, to 

the LLNL developed two-dimensional high rate continuum modeling programs 

DYNA2D and CALE. Thc resulting program has thc ability to optimize initial 

modeling parameters using either DYNMD, CALE, or both. The combined codes 

wcrc used to optinnally parametcrize the thcrmodynamic cquations of state and the 

ignition and growth model to expcrimental rccords. 

Prior to this investigation, thc NLQPEB nonlinear optimization program was 

used to parameterize a JWL detonation products equation of state (I). in order to 

closely reproduce cxperimental cylinder test wall vclocities'. A test cylinder con- 
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sistcd of a Winch long, by 1-inch outside diameter, by 3/4-inch inside diameter 

precision machined oxygen free copper tube filled with PAXZA explosive material. 

The explosive charge was detonated from one end and the cylinder wall expansion 

was recorded with an ultrahigh speed smear camera. The f h  record of the cylin- 

der wall expansion was then digitized and wall velocities were determined at vari- 

ous levels of expansion. Program NLQPEB was then applied to an analytic cylin- 

der test model to o p t b  experimental and calculated cylinder wall velocities us- 
ing an error squared cost function. Equality constraints were added to produce a 

chosen detonation energy and rncasured Chapman-Jouguct detonation velocity. 

The resulting JWL equation of statc was verified using DYNA2D modeling of the 

same experiment 

~n unrcacted JWL quation of state was similarly parameterized' using 

NLQPEB to closely reproduce an unrcacted HugoniotU b a d  on initial shock be- 
havior from wedge test and Lagrange gauge exprimentation. Quality constraints 

were addcd to produce an initial unprcssurizcd statc (P = 0.) and chosen Von 

Neumann spikc prcssurc2'. The rcsuting JWL constants and material strength pa- 

rametcrs are prcscntcd in Table l. 

Program NLQPEB was usod to paramclcrize thc Tarvcr bum ratc model (2), 

using the cost function d c f i  in (IS). Thc rcaction ratc constants used for thc 

initial values of the optimization variables were basd on LX-10 ignition 

andgrowth constantss. A number of optimizations were performed investigating 

different optimization variable initial values, cost functions, and opthii t ion pa- 

rametcr sct circcts. Tabk 2 presents thc initial and fmul optimization cost function 

values, along with the initial and final optimized ignition and growth constants. 

The results presented in Table 2 used six of the Ignition and Growth constants as 
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optimization variables and resulted in 38 iterations rcquiring about 3 1/2 hours of 

CPU tirnc. 

TABLE 1. PAXZA JWL Constants 

A large reduction in the optimization cost function value indicates a large 

improvement in iigrement between the calculated pressure histories and the ex- 

perimental pressuire histories. Figure 4 presents a comparison of the initial calcu- 

lated pressure histories to the experimental pressure histories. Figure 5 presents a 

comparison of the fmal optimized calculated pressure histories to the cxperimcntal 

pressurc historics. A dramatic improvcmcnt in agreement to the data is cvident for 

the optimized parameter set. Figures 4 and 5 werc generated from the output of 

DYNA2D; CALE produccs similar results. Note that thc optimization results in 

Table 2 only u d  a subset of the available model parameters. while this optimi- 

zation gives goodl agrecrnent with experimental results, a more complete optimiza- 

tion including mom model parameters may give even better agrecmcnt 
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TABLE 2. PAXZA Ignition and Growth Constants 

CONCLUSIONS 

Optimizahn by the variable mctric sequential quadratic programming 

method has becn successfuUy applied to Lagrangian and Arbilrary Lagrangian Eu- 
larian codes for reactive flow continuum modeling of high cxplosive initiation. 

The fual cdculated pressure histories are obswvcd to agree well with the experi- 

mental om. Application of the variable metric SQP mclhod greatly reduces the 
mtdcl paramcterhtion timc and succcssrully improvcs the quantitativc agrcemcnt 

in comparison with manual efforts. Additionally, the optimization methods should 
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bc cxtcndiblc to mom complcx initiation modcls, providing improvcd initiation 

prcdiction for thc computational dcsign of safcr munitions systcms. Parmtric 

optimization of iricrcascd complcxity high cxplosivc bchavior and mod& contin- 

ucs to bc invcstigatai. Ongokg cKorts arc conccntrating on improvcmcnt or 

global optimiiation stralcgics yd optimiiation using distributcd and scdcabk 

pardlcl computcr structures. 
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FIGURE 1 .  Manganin gauge experimcntal apparatus. 
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FIGURE, 2. Schcmatic of DYNA2D meshing and material setup. 
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FIGURE 3. Flow chart for the reactivc flow continuum model parameter optimi- 
zations. 
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